The last puzzle! One team is almost done with it...

Update:

The treasure has been unearthed! Pop the corks! It was found today (6/1) at 3:45 pm by Enrique and Carolina behind the old calculus books in the book depository and much rejoicing ensued!

## Thursday, May 31, 2007

### Puzzle #8

Posted by Dan Wekselgreene 2 comments Links to this post

Labels: treasure hunt

## Thursday, May 24, 2007

## Monday, May 21, 2007

## Wednesday, May 16, 2007

### National Board Certification

We had a presentation about this after school today. Sounds like it could be really powerful professional development, but it takes a lot of time to complete. If you've gone through the certification process, I'd love to hear your impressions. What is the process like? Is it worth it? What did you gain from it?

Posted by Dan Wekselgreene 13 comments Links to this post

## Tuesday, May 08, 2007

### Puzzle #1

As I've mentioned, my Algebra 2 honors students are currently engaged in a treasure hunt. The idea is that each puzzle will require them to review material from earlier units, and to also do a little bit of independent research to move forward. Here is the first puzzle - can you tell me who to talk to?

Posted by Dan Wekselgreene 0 comments Links to this post

Labels: algebra 2, treasure hunt

## Thursday, May 03, 2007

### The Big "L"

There are some students who, no matter what, can’t seem to comprehend what a logarithm (when treated like an operation) is doing. I see students that:

1) Cancel the log.

2) Multiply by log.

3) Ask where the 2 went when log2(8) is simplified to 3.

These mistakes indicate that “log” is being perceived as some sort of quantity to be manipulated, not as an operation. This may be due to the fact that “log” is the first time students are exposed to an operation that is represented as a word instead of as a symbol or other numerical notation. Texts apparently assume that this is a natural transition, not even worth mentioning, but it’s pretty clear that it is not as obvious as one might think.

To help students see what is going on, I’ve tried expressing other operations in a similar manner and drawing parallels. For example, take a look at roots and powers:

Logarithm does not have a symbol; our initial idea was to therefore rewrite exponentiation in terms of the “word operation" exp. We then explained that logarithms are the inverse of exponentiation, and that they undo each other, just like addition and subtraction, multiplication and division, and powers and roots.This seems to have worked moderately well in terms of getting students to be able to evaluate and solve the log problems that they encounter on the STAR tests. However, I don’t think it’s really helped them to understand what a logarithm is, and their ability to apply the concept flexibly is quite limited.

I’m wondering now if going the other direction would have been better. Instead of rewriting exponentiation as a “word operation", we could have invented a symbolic representation for logarithms – say, a big L. (Not to be confused, of course, with the L formed by thumb and pointer finger, raised to the forehead!).

Inverse operations could then be modeled like this:

When I ask my students what “the third root of 8” means, they are pretty good about saying something like “what number to the third power gives you 8”.

When I ask them what “the log base 2 of 8” means, they rarely can say “2 to what power gives you 8”. I wonder if using a symbolic representation of logs will allow this meaning to be clearer. After all, when you think of a log in this way, it’s not really that much more confusing than a root.

I’d be interested in hearing any thoughts on this. Would a symbol for log be helpful? Confusing?

Posted by Dan Wekselgreene 24 comments Links to this post

Labels: algebra 2, logarithms

### Mad Video Production Skills

I'm linking to this, not because he asked, but because it is pretty damn cool. Videos used to scaffold a linear functions unit. Check it out.

Posted by Dan Wekselgreene 0 comments Links to this post

Labels: algebra 1, linear functions